Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556904

RESUMO

Phospholipids (PL) have garnered significant attention due to their physiological activities. Milk and other dairy products are important dietary sources for humans and have been extensively used to analyze the presence of PL by various analytical techniques. In this paper, the analysis techniques of PL were reviewed with the eight trigrams of phospholipidomics and a comprehensive fingerprint of 1295 PLs covering 8 subclasses in milk and other dairy products, especially. Technology is the primary productive force. Based on phospholipidomics technology, we further review the relationship between the composition of PL and factors that may be involved in processing and experimental operation, and emphasized the significance of the biological role played by PL in dietary supplements and biomarkers (production, processing and clinical research), and providing the future research directions.

2.
Foods ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201191

RESUMO

As the most prevalent mycotoxin in agricultural products, aflatoxin B1 not only causes significant economic losses but also poses a substantial threat to human and animal health. AFB1 has been shown to increase the risk of hepatocellular carcinoma (HCC) but the underlying mechanism is not thoroughly researched. Here, we explored the toxicity mechanism of AFB1 on human hepatocytes following low-dose exposure based on transcriptomics and lipidomics. Apoptosis-related pathways were significantly upregulated after AFB1 exposure in all three hES-Hep, HepaRG, and HepG2 hepatogenic cell lines. By conducting a comparative analysis with the TCGA-LIHC database, four biomarkers (MTCH1, PPM1D, TP53I3, and UBC) shared by AFB1 and HCC were identified (hazard ratio > 1), which can be used to monitor the degree of AFB1-induced hepatotoxicity. Simultaneously, AFB1 induced abnormal metabolism of glycerolipids, sphingolipids, and glycerophospholipids in HepG2 cells (FDR < 0.05, impact > 0.1). Furthermore, combined analysis revealed strong regulatory effects between PIK3R1 and sphingolipids (correlation coefficient > 0.9), suggesting potential mediation by the phosphatidylinositol 3 kinase (PI3K) /protein kinase B (AKT) signaling pathway within mitochondria. This study revealed the dysregulation of lipid metabolism induced by AFB1 and found novel target genes associated with AFB-induced HCC development, providing reliable evidence for elucidating the hepatotoxicity of AFB as well as assessing food safety risks.

3.
Food Chem ; 438: 137974, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37979266

RESUMO

Pesticides are widely used in the cultivation and breeding of agricultural products all over the world. However, their direct use or indirect pollution in animal breeding may lead to residual accumulation, migration, and metabolism in animal-derived foods, posing potential health risks to humans through the food chain. Therefore, it is necessary to detect pesticide residues in animal-derived food using simple, reliable, and sensitive methods. This review summarizes sample extraction and clean-up methods, as well as the instrumental determination technologies such as chromatography and chromatography-mass spectrometry for residual analysis in animal-derived foods, including meat, eggs and milk. Additionally, we perspectives on the future of this field. This information aims to assist relevant researchers in this area, contribute to the development of ideas and novel technical methods for residual detection, metabolic research and risk assessment of pesticides in animal-derived food.


Assuntos
Resíduos de Praguicidas , Praguicidas , Animais , Humanos , Resíduos de Praguicidas/análise , Contaminação de Alimentos/análise , Praguicidas/análise , Espectrometria de Massas , Carne/análise
4.
Sci Total Environ ; 898: 165553, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37459993

RESUMO

Mycotoxin aflatoxin B1 (AFB1) has been proven to cause neurotoxicity, but its potential interference with the normal function of brain tissue is not fully defined. As the indispensable role of lipids in maintaining the normal function of brain tissue, the aim of this study is to clarify the effect of AFB1 short-term (7 days) exposure on brain tissue from the perspective of lipid metabolism. In this study, zebrafish were exposed to two concentrations (5, 20 µg/L). Through quantitative analysis of AFB1, the detection of AFB1 in zebrafish brain tissue was discovered for the first time, combined with the changes in zebrafish neurobehavior, the occurrence of brain injury was deduced. Subsequently, 1734 lipids in zebrafish brain tissue were mapped using ion mobility time-of-flight mass spectrometry (UPLC-QTOF-IMS-MS), which has great advantages in lipid detection. Comparative analysis of the abnormal lipid metabolism in zebrafish brain revealed 114 significantly changed lipids, mainly involving two pathways of sphingolipid metabolism and fatty acid degradation. This study discovered the detection of AFB1 in the brain and revealed a potential link between AFB1-induced behavioral abnormalities and lipid metabolism disorders in brain tissue, providing reliable evidence for elucidating the neurotoxicity of AFB1.


Assuntos
Micotoxinas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Aflatoxina B1/toxicidade , Lipidômica , Micotoxinas/metabolismo , Lipídeos
5.
Foods ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159483

RESUMO

A multiclass and multiresidue method for simultaneously screening and confirming veterinary drugs, mycotoxins, and pesticides in bovine milk was developed and validated with ultrahigh-performance liquid chromatography-hybrid quadrupole-linear ion trap mass spectrometry (UHPLC-Qtrap-MS). A total of 209 targeted contaminants were effectively extracted using an optimized QuEChERS method. Quantitative and qualitative confirmation were achieved simultaneously by multiple reaction monitoring-information-dependent acquisition-enhanced product ion (MRM-IDA-EPI) scan mode. The validation results exhibited a good sensitivity with the LOQs of 0.05-5 µg/kg, which was satisfactory for their MRLs in China or EU. The recoveries of in-house spiked samples were in the range of 51.20-129.76% with relative standard deviations (RSD) between replicates (n = 3) 0.82% and 19.76%. The test results of 140 milk samples from supermarkets and dairy farms in China showed that cloxacillin, aflatoxin M1, acetamiprid, and fipronil sulfone were found with lower concentrations. Combined with the residue results from the literature, penicillin G and cloxacillin (beta-lactams), enrofloxacin and ciprofloxacin (fluoroquinolones), and sulfamerazine (sulfonamides) were more frequently detected in different countries and need to receive more attention regarding their monitoring and control.

6.
Ecotoxicol Environ Saf ; 224: 112677, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34450423

RESUMO

Fipronil and its metabolites (fipronil sulfone, fipronil sulfide and fipronil desulfinyl) adversely affect the environment and human health. Targeted metabolomics and lipidomics based on ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to analyse the alterations of glycerophospholipids and amino acids after exposure to fipronil and its metabolites at dosages of 0.5, 12.5 and 50 µM for 72 h and to evaluate their different toxic effects. Results showed that fipronil sulfone and fipronil desulfinyl are more toxic than their parent compound, with fipronil desulfinyl as the most toxic and fipronil sulfide as the least toxic. Fipronil and its metabolites affected the metabolism of PC18:1/16:0, PI18:0/20:4, arginine, leucine and tyrosine and the "phenylalanine, tyrosine and tryptophan biosynthesis" pathway, indicating their possible inducing role in cellular macromolecule damage, nerve signal transmission disturbance and energy metabolism disruption caused by oxidative stress. Importantly, fipronil sulfone and fipronil desulfinyl more strongly influenced lipid and amino acid metabolism, mainly reflected in the number of changed glycerophospholipids and differential metabolites associated with oxidative stress, including PS18:0/20:4, glutamate, phenylalanine and histidine for fipronil sulfone and PS18:0/20:4, glutamate, phenylalanine, serine and aspartic acid for fipronil desulfinyl. Therefore, the higher toxicity of fipronil desulfinyl and fipronil sulfone may be also related to oxidative stress. This study provides implications for risk assessment and toxic mechanism research on fipronil and its metabolites.

7.
Environ Pollut ; 284: 117327, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030083

RESUMO

Neonicotinoid insecticides are widely used for pest control. However, they are highly water-soluble and easily ingested by organisms, posing potential health risks. In this study, cytotoxicity evaluations of imidacloprid and acetamiprid were conducted in Neuro-2a cells by obtaining their half maximal inhibitory concentration (IC50 values) (1152.1 and 936.5 µM, respectively). The toxic effects at the IC10 and IC20 on cell metabolism were determined by integrated non-targeted lipidomics and metabolomics analyses. Changes in the concentration of acetamiprid caused the most drastic perturbations of metabolism in Neuro-2a cells. Altogether, the detected lipids were mainly attributed to triglyceride, phosphatidylcholine (PC), and diglyceride. These three categories of lipids accounted for more than 67% of the sum in Neuro-2a cells. A total of 14 lipids and other 40 metabolites were screened as differential metabolites based on multivariate data analysis, and PCs were most frequently observed with a proportion of 25.9%. The results demonstrated that lipid metabolism should be paid considerable attention after imidacloprid and acetamiprid exposure. Pathway analysis showed that the metabolisms of glycerophospholipid, sphingolipid, and glutathione were the dominant pathways that were interfered. The present study is the first to investigate the cellular toxic mechanisms after separate imidacloprid and acetamiprid exposure by using lipidomics and metabolomics simultaneously. This research also provides novel insights into the evaluation of the ecological risk of imidacloprid and acetamiprid and contribute to the study of toxicity mechanism of these neonicotinoid insecticides to animals and humans in the future.


Assuntos
Inseticidas , Lipidômica , Animais , Humanos , Inseticidas/toxicidade , Metabolômica , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
8.
Ecotoxicol Environ Saf ; 194: 110338, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32135376

RESUMO

2,2',3,5',6-Pentachlorobiphenyl (PCB95) is known as a persistent pollutant that was found in eggs in China. PCB 95 can be metabolized into OH-PCB95 and MeO-PCB95 in liver microsomes. However, the toxicity and its mechanism of PCB95 or its metabolites have been little studied on laying hens. Herein, chicken embryo liver cells of laying hens were selected and treated with different levels of PCB95 and its two metabolites, and the EC50 of PCB95, OH-PCB95, MeO-PCB95 was 80.85, 4.81 and 107.04 µg/mL respectively, indicating that OH-PCB95 is much more cytotoxic than PCB95 or MeO-PCB95. Targeted metabolomics was further used to study the effects of the parent compound and its metabolites on cell metabolism. The results showed that four primary types of glycerophospholipids were down-regulated after exposure to PCB95 and its metabolites, especially PE and PS (60% more than the control for PCB95, 40% for OH-PCB95, and less than 40% for MeO-PCB95). KEGG pathway analysis based on amino acid metabolism showed that PCB95 may mainly interfere with the amino acids involved in immune regulation (phenylalanine and tyrosine), and OH-PCB95 may be associated with genetic disoders (cysteine, methionine and purine metabolism). However, the metabolic pathways induced by MeO-PCB95 are quite different from those induced by PCB95 and OH-PCB95, affecting mainly D-glutamine and D-glutamate metabolism, alanine and glutamate metabolism, and arginine and proline metabolism; these pathways mainly regulate the elimination of excess purines and are involved in the synthesis of the amino acids required by cells. These results showed that OH-PCB95 has the highest toxicity on chicken embryo liver cells and MeO-PCB95 could be a detoxification product of PCB95 and OH-PCB95. This study contributes to the understanding of the different effects of PCB95 and its metabolites on cellular metabolism, and the data are helpful in evaluating the hepatotoxic effects of these compounds.


Assuntos
Poluentes Ambientais/toxicidade , Bifenilos Policlorados/toxicidade , Aminoácidos/metabolismo , Animais , Embrião de Galinha , Galinhas/metabolismo , China , Ovos , Poluentes Ambientais/metabolismo , Feminino , Hepatócitos/metabolismo , Fígado/metabolismo , Redes e Vias Metabólicas , Metabolômica , Metionina/metabolismo , Microssomos Hepáticos/metabolismo , Testes de Toxicidade
9.
Sci Total Environ ; 713: 136565, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954244

RESUMO

The stereoselective effects of chiral ibuprofen (IBU) were studied using lipidomics by exposing adult zebrafish (Danio rerio) to an environmental concentration of 5 µg/L for 28 days. After treatment with rac-/R-(-)-/S-(+)-IBU, the brain tissue of the zebrafish was harvested to analyze for lipid metabolites by using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Results showed that the six classes of lipids, namely, glycerophospholipids, sterol lipids, prenol lipids, fatty acyls, glycerolipids, and sphingolipids, including 46 biomarkers, were affected after exposure. The different influences on metabolites were observed in the rac-/R-(-)-/S-(+)-IBU-treated samples. The rac-IBU treatment remarkably affected nine lipids. The R-(-)-IBU and S-(+)-IBU treatments had remarkably effects on six and four lipids, respectively. According to the HMDB database and KEGG pathways, nine important lipids were successfully matched to the involved biochemical pathways, such as glycerophospholipid metabolism, arachidonic acid metabolism, and linoleic acid metabolism. Therefore, IBU can cause disorders in the metabolism of the brain lipids of adult zebrafish and affect the composition of biological membranes, inflammatory responses, and cardiovascular and cerebrovascular diseases. The significant difference in the effects of R-(-)-IBU and S-(+)-IBU on lipidomics indicated that chiral IBU has stereoselective toxicity to aquatic organisms. Our study provided new insights into the environmental toxicology and highlighted the hazard of pharmaceutical and personal care product pollution in aquatic environments.


Assuntos
Peixe-Zebra , Animais , Encéfalo , Cromatografia Líquida de Alta Pressão , Ibuprofeno , Lipidômica
10.
J Agric Food Chem ; 67(26): 7538-7546, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180663

RESUMO

Thiamethoxam (TMX) has already been proven to have a physiological effect in plant tissue or cell expect for the insecticidal activity. In our previous study, TMX was verified to be metabolized by tea cells in either a suspension culture or tea plant into several metabolites. Here, tea cell suspension cultures were treated for 45 days to investigate the metabolite effects in both the tea cells and the culture supernatants by nontargeted metabolomics. Using multivariate analysis (PCA and OPLS-DA), all treatment and control groups could be clearly separated. Inside the cells, 113 metabolites were found to be up-regulated while 122 were down-regulated, when compared with untreated cells. In the culture supernatant, there were 128 up-regulated and 35 down-regulated metabolites, compared to untreated cultures. KEGG searches revealed that the alanine, aspartate, and glutamate metabolic pathways were strongly affected by TMX metabolism within the tea cell. Molecular docking models showed that (i) 4-aminobutyrate aminotransferase may be related to the formation of 2-chloro-thiazole-5-carboxylic acid and (ii) 3'(2'),5'-bisphosphate nucleotidase may be able to interact with TMX. This study can help us to understand the interaction mechanism of pesticides with plant cells.


Assuntos
Camellia sinensis/química , Camellia sinensis/metabolismo , Inseticidas/metabolismo , Tiametoxam/metabolismo , Células Cultivadas , Inseticidas/química , Redes e Vias Metabólicas , Metabolômica , Simulação de Acoplamento Molecular , Tiametoxam/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...